CS 4530: Fundamentals of Software Engineering

Module 5: Interaction-Level Design Patterns

Adeel Bhutta, Joydeep Mitra, and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license


https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* By the end of this lesson, you should be able to

e Explain how patterns capture common solutions and
tradeoffs for recurring problem:s.

* Explain and give an example of each of the following:
 The Demand-Pull pattern
* The Data-Push (aka Listener or Observer) pattern
* The Callback or Handler pattern
* The Typed-Emitter pattern



What is a Pattern?

e A Pattern is a summary of a standard solution (or
solutions) to a specific class of problems.

* A pattern should contain
* A statement of the problem being solved
* A solution of the problem
* Alternative solutions
* A discussion of tradeoffs among the solutions.

* For maximum usefulness, a pattern should have a
name.

* So you can say “here I’'m using pattern P” and people
will know what you had in mind.



Patterns help communicate intent

* If your code uses a well-known pattern, then the
reader has a head start in understanding your code.



Patterns are intended to be flexible

* We will not engage in discussion about whether a
particular piece of code is or is not a “correct”
instance of a particular pattern.



This week we will talk about the interaction
scale

The Interaction Scale

e key questions: how do the pieces interact? how are
they related?




[ src/pullingClock/IPullingClock.ts

Example: Interface for a simple clock

export default interface IPullingClock {

/** sets the time to © */
reset():void

/** increments the time */
tick():void

/** getter that returns the current time */
get time():number



Tests for the clock and the client describe
their desired behavior

import { SimpleClock, ClockClient } from "./simpleClock"

test("test of SimpleClock", () => { test("test of ClockClient", () => {
const clockl = new SimpleClock const clockl = new SimpleClock
expect(clockl.time).toBe(9) expect(clockl.time).toBe(9)
clockl.tick() const clientl = new ClockClient(clockl)
clockl.tick() expect(clockl.time).toBe(9)
expect(clockl.time).toBe(2) expect(clientl.clientTime()).toBe(0)
clockl.reset() clockl.tick()
expect(clockl.time).toBe(9) clockl.tick()

}) expect(clientl.clientTime()).toBe(2)

})

[ src/pullingClock/simpleClockUsingPull.test.ts ]




[ src/pullingClock/simpleClockUsingPull.ts J

simpleClockUsingPull.ts

import IClock from "./IPullingClock";

export class SimpleClock implements IClock {
private time = 0
public reset() : void {this. time = 0}
public tick() : void { this. time++ }
public get time(): number { return this. time }

SimpleClock is the Producer

export class ClockClient { ClockCliewt is the Consumer
constructor (private theclock:IClock) {}
clientTime(): number {return this.theclock.time}




We call this the "demand-pull” pattern

* because the when the client needs some datg, it
pulls the data it needs from the server.

* Alternative names: you could call these the
consumer and the producer.

10



But there's a potential problem here.

 What if the clock ticks once per second, but there
are dozens of clients, each asking for the time every

10 msec?
* Our clock might be overwhelmed!

e Can we do better for the situation where the clock
updates rarely, but the clients need the values

often?

11



The 'data-push’ pattern

 We'd like to arrange it so that the server pushes the
data to the consumer only when it changes

* To accomplish that, the consumer needs to
advertise an 'update' method that the producer can
call.

12



This is called the Listener or Observer
Pattern

* Also called "publish-subscribe pattern™

* The object being observed (the “subject”) keeps a
list of the objects who need to be notified when
something changes.

* subject = producer = publisher

 When a new object (i.e., the “consumer”) wants to
be notified when the subject changes, it registers
with ("subscribes to") the
subject/producer/publisher
* observer = consumer = subscriber = listener

13



[ src/pushingClock/pushingClock.interface.ts ]
Interface for a clock using the Push pattern

export interface IPushingClock {

/*¥* pesets the time to 0 */
reset():void

/**
* increments the time and sends a .notify message with the
* current time to all the consumers

*/
tick():void

/** adds another consumer and initializes it with the current time */
addListener(listener:IPushingClockClient) :number

14



[ src/pushingClock/pushingClock.interface.ts J
Interface for a clock listener

interface IPushingClockClient {
/**
* % @param t - the current time, as reported by the clock
*/

notify(t:number):void

15



src/pushingClock/pushingClock.test.ts J

Tests

test("single observer", () => {

const clockl = new PushingClock()
const observerl

= new PushingClockClient(clockl)
expect(observerl.time).toBe(0)
clockl.tick()
clockl.tick()
expect(observerl.time).toBe(2)

})

test("Multiple Observers", () => {

const clockl = new PushingClock()
const observerl

= new PushingClockClient(clockl)
const observer2

= new PushingClockClient(clockl)
const observer3

= new PushingClockClient(clockl)
clockl.tick()
clockl.tick()
expect(observerl.time).toBe(2)
expect(observer2.time).toBe(2)
expect(observer3.time).toBe(2)

1)

16



[ src/pushingClock/pushingClock.ts

A PushingClock class

export default class PushingClock implements IPushingClock {
private time = 0
reset() : void { this. time = 0; this.notifyAll() }
tick() : void { this. time++; this.notifyAll() }

private _observers: IPushingClockClient[] = []

public addListener(obs:IPushingClockClient): number {
this. observers.push(obs);
return this. time

}

private notifyAll() : void {
this. observers.forEach(obs => obs.notify(this. time))

}

17



[ src/pushingClock/pushingClockClients.ts J

A Client

export class PushingClockClient implements IPushingClockClient {
private _time:number

constructor (theclock:IPushingClock) {
this. time = theclock.addListener(this)

}
notify (t:number) : void {this. time = t}

get time () : number {return this. time}

18



The observer can do whatever it likes with
the nOtiﬂcation [ src/pushingClock/pushingClockClients.ts J

export class DifferentClockClient implements IPushingClockClient {

/** TWICE the current time, as reported by the clock */
private twiceTime:number
constructor (theclock:IPushingClock) {

this. twiceTime = theclock.addListener(this) * 2

¥

/** list of all the notifications received */
public readonly notifications : number[] = [] // just for fun

notify(t: number) : void {
this. twiceTime = t * 2

this.notifications.push(t)

}

get time() : number { return (this. twiceTime / 2) }

19



[ src/pushingClock/pushingClock.test.ts ]

Better test this, too

test("test of DifferentClockClient™, () => {
const clockl = new PushingClock()
const observerl = new DifferentClockClient(clockl)
expect(observerl.time).toBe(0)
clockl.tick()
expect(observerl.time).toBe(1)
clockl.tick()
expect(observerl.time).toBe(2)

1)

20



Tests for .notifications method

test("DifferentClockClient accumulates the times correctly", ()

=>{
const clockl = new PushingClock()
clockl.tick()

const differentClient = new DifferentClockClient(clockl)

expect(differentClient.time).toBe(1)

expect(differentClient.notifications).toEqual([])

clockl.tick()
clockl.tick()
clockl.tick()
expect(differentClient.time).toBe(4)

expect(differentClient.notifications).toEqual([2, 3, 4])

})

[ src/pushingClock/pushingClock.test.ts Jé——

There are more tests in here;
you should look at them.

21



Push or Pull?

more data requests

t data changes p

slowly; e

prefer to push »
on change ,/

/
/

,/ data changes faster;

// prefer to only pull

/7 when needed
7

v

» data changes faster

22



Maybe the server doesn't want to give the
client access to all of its methods

export class DifferentClockClient implements IPushingClockClient {

/** TWICE the current time, as reported by the clock */
private twiceTime:numbe

ck) DANGER!!

addt istener(this) * 2

constructo
this.twlce

¥

/** 1ist of all the notifications received */
public readonly notifications : number[] = [] // just for fun

notify(t: number) : void {

this.notifications.push(t) [ src/pushingClock/pushingClockClients.ts ]
this.twiceTime = t * 2 }

time : number { return (this.twiceTime / 2) } -



Pattern #3: The callback or handler pattern

* Maybe the server doesn't want to give the client
access to all of the server's methods.

* the server constructs the client and gives it a
function to call instead.

 Typically, this will be a function inside the server

e We call this function the callback or handler for the
client's action.

* This pattern is used all the time in REACT.

26



[ src/callBacksFunctional/callBacks.interface.ts }

The interface

export interface ICallBackServer {

// returns a new client that satisfies the ICallBackClient interface
newClient(clientName: string): ICallBackClient;

// returns the log of all messages received

log(): string[];
}

export interface ICallBackClient {
// sends the clients name to the server,
sendName: () => void
// asks the server for list of all messages received
// from all clients.
getLog: () => string[];

} 27



[ src/callBacksFunctional/callBacks.test.ts

Example: Expected Behavior

it('works', () => {

})

const server = new Server()
const clientl = server.newClient("A")
const client2 = server.newClient("B")

clientl.sendPush()
expect(clientl.getlLog()).toEqual(["A"])
client2.sendPush()
expect(clientl.getlLog()).toEqual(["A", "B"
expect(client2.getlLog()).toEqual(["A", "B"
// now clientl pushes again
clientl.sendPush()

// now the clients can see all the pushes
expect(clientl.getLog()).toEqual(["A", "B", "A"
expect(client2.getlLog()).toEqual(["A", "B", "A"

1)
Iy

1)
D

28



The Client

[ callBacksFunctional/callBackExample.ts ]

export default class Client implements ICallBackClient {

// the server creates the client with two callbacks
// the callbacks are kept as private members

private sendNameCallback: () => void
private getlogCallback: () => string[]

constructor(

sendNameCallback: () => void,
logCallback: () => string[],
// install the callbacks

) { this. sendNameCallback = sendNameCallback;

this. getlogCallback = logCallback;

}

// the public methods just call the callbacks
public sendName() { this. sendNameCallback(); }
public getLog(): string[] { return this. getlLogCallback(); }

29



[ callBacksFunctional/callBackServer.ts J

The Server

export default class Server implements ICallBackServer {

public newClient(clientName: string): ICallBackClient {
return new Client(this.sendNameHandler(clientName), this.logHandler)

¥

// the log of all messages received

private _log: string[] = []

public log(): string[] { return this. log }

private logHandler = (): string[] => { return this._log }

// we'd like to write
private BogusSendNameHandler(clientName: string): () => void {
return () => { this. log.push(clientName) }

}

// but this doesn't work because 'this' is not bound correctly
// when the callback is called. So we use a lambda instead:

private sendNameHandler = (clientName: string) => () => { this. log.push(clientName) }

// this works because lambdas bind 'this' lexically, so 'this'
// 1s always the server object.



Pattern #4: The Typed-Emitter Pattern

 What if the data source wants to notify its listeners
with several different kinds of messages?

* Maybe with different data payloads?

* And what if we want to take advantage of type-
checking?

31



Emitters use a server/client model

e Client can send a

Server message to its
server

e Server can send a
message to an
individual client

{ Client } { Client } { Client } e ...or tosome or all
its clients

32



Typed Emitters use types to specify messages
that servers and clients can exchange

// a simple ping-pong protocol for testing WebSocket connections.

// server starts with (ping 0)
// client replies to server 'ping n' with 'pong n' (n <= 5)
// server replies to client 'pong n' with 'ping n+1'
Note: this is the

export interface ServerToClientEvents { interface for the socket-

‘ping’: (count:number) => void; io implementation of
} emitters. Other
implementations use
export interface ClientToServerEvents { somewhat different
‘pong': (clientName: string, count:number) => void; interfaces.

‘goodbye’': (clientName: string) => void;

[ src/webSocketsSimple/shared.ts J

33



Emitters typically provide many methods

export interface EventEmitter {

/** The event callbacks are called with the passed arguments */
emit(type, ... args);

/** Run callback every time event is emitted */

on(event, callback);

/** Run callback when event is emitted just for the first time */
once(event, callback);

/** Removes the callback for event */

off(event, callback);

/** Removes all callbacks for event */

off(event);

/** Removes all callbacks for all events */

off();

34



This pattern can be used across multiple
machines using websockets.

* Websockets is a standard, but low-level protocol for
sending messages between machines.

* Socket.io provides a typed-emitter-style
programming model for webSockets.

* It also provides automatic reconnection, broadcast
rooms, and other goodies

35


https://socket.io/docs/v4/tutorial/introduction
https://socket.io/docs/v4/tutorial/introduction

Creating a Server

import { createServer as createHttpServer } from "http";
import { Server, Socket } from "socket.io";
import { ClientToServerEvents, ServerToClientEvents } from './shared';

const corsParams = {
origin: "http://localhost:8080", // Updated to match client port

methods: ["GET", "POST"]
}

export default function createServer() {
const httpServer = createHttpServer();

const io = new Server<ClientToServerEvents, ServerToClientEvents>(httpServer, { cors: corsParams });

io.on("connection", (socket) => {

console.log('server reports new connection')
startServerHandlers(socket) <5i::::::]
)

console.log('server.ts: Listening on port 8080"')
httpServer.listen(8080);

36



[ src/webSocketsSimple/server.ts

Finishing the server

function startServerHandlers(socket: Socket<ClientToServerEvents, ServerToClientEvents>){

console.log('sending initial ping')
socket.emit('ping', ©); // send initial ping

socket.on('pong', (clientName: string, n: number) => {

console.log( server received pong from ${clientName} with count ${n} );

: Here's where the
if (count < 5) {

socket.emit('ping', n + 1); // reply with ping n+1 server implements
} else { the protocol we
console.log( server disconnecting ${clientName} after 5 pings’); saw before

socket.disconnect();

})

socket.on('goodbye', (clientName: string) => {
console.log( server received goodbye from ${clientName} );

})ss

37



[ src/webSocketsSimple/client.ts

Building a client

import { io, Socket } from 'socket.io-client';
import { ClientToServerEvents, ServerToClientEvents } from './shared';

const clientURL = "http://localhost:8080"; // Ensure this matches the server URL

export default class Client {
private socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(clientURL)
private clientName: string;

constructor(clientName: string) {
this.clientName = clientName;
console.log(clientName, “connecting to , clientURL);
startClientHandlers(this.socket, this.clientName);
console.log( ${this.clientName} event handlers started );

38



The client handlers

function startClientHandlers(

) A

socket: Socket<ServerToClientEvents, ClientToServerEvents>,
clientName: string

// system starts by sending 'connect’
socket.on('connect', () => {

console.log( ${clientName} connected to server on ${clientURL} );

})s

socket.on('ping', (n: number) => {
console.log( ${clientName} received ping with count ${n} );

if (n <= 5) {
socket.emit('pong', clientName, n); // reply with pong
} else {

console.log( ${clientName} received ping with count ${n} > 5, this shouldn't happen’);
socket.disconnect(); // disconnect if count exceeds 5

})s

39



Choreographies and P

rojections

Choreography

// a simple ping-pong protocol for testing WebSocket connect

// server starts with (ping @)
// client replies to server ‘'ping n' with 'pong n' (n <= 5)
// server replies to client 'pong n' with 'ping n+1°'

export interface ServerToClientEvents {
"ping"': (count:number) => void;

}

export interface ClientToServerEvents {
‘pong’: (clientName: string,

r) => void;

function startClientHandlers(
socket: Socket<ServerToClientEvents, ClientToServerEvents>,
clientName: string

) {
1/

system starts by sending ‘connect’

socket.on('connect’, () => {

1)

console.log( ${clientName} connected to server on ${clientURL}

socket.on('ping’, (n: number) => {

console.log( ${clientName} received ping with count ${n} );

if (n <= 5) {
socket.emit('pong’, clientName, n); // reply with pong

} else {// invariant violated! disconnect if count exceeds 5
console.log( ${clientName} received ping with count ${n} >
socket.disconnect();

}
s
function startClientHandlers(socket: v Look at the file
Socket<ServerToClientEvents, ClientToServerEvents>) { if you want to see
where the socket
// system starts by sending 'connect’ comes from.

1

console.log( ${this.clientName} received ping with count ${n} );

if (n ¢ 5) {

this.socket.emit('pong’, this.clientNape, n); // reply with pong
} else {

hi ‘goodbye’, this.clientName);

(9); // exit the process

Projections

40



Review: Learning Goals for this Lesson

* You should now be able to:

e Explain how patterns capture common solutions and
tradeoffs for recurring problem:s.

* Explain and give an example of each of the following:
* The Demand-Pull pattern
* The Data-Push (aka Listener or Observer) pattern
* The Callback or Handler pattern
* The Typed-Emitter pattern

41



	The Interaction Scale
	Slide 1: CS 4530: Fundamentals of Software Engineering  Module 5: Interaction-Level Design Patterns
	Slide 2: Learning Goals for this Lesson
	Slide 3: What is a Pattern?
	Slide 4: Patterns help communicate intent
	Slide 5: Patterns are intended to be flexible
	Slide 6: This week we will talk about the interaction scale
	Slide 7: Example: Interface for a simple clock
	Slide 8: Tests for the clock and the client describe their desired behavior
	Slide 9: simpleClockUsingPull.ts
	Slide 10: We call this the "demand-pull" pattern
	Slide 11: But there's a potential problem here.
	Slide 12: The 'data-push' pattern
	Slide 13: This is called the Listener or Observer Pattern
	Slide 14: Interface for a clock using the Push pattern 
	Slide 15: Interface for a clock listener
	Slide 16: Tests
	Slide 17: A PushingClock class
	Slide 18: A Client 
	Slide 19: The observer can do whatever it likes with the notification
	Slide 20: Better test this, too
	Slide 21: Tests for .notifications method
	Slide 22: Push or Pull?
	Slide 25: Maybe the server doesn't want to give the client access to all of its methods
	Slide 26: Pattern #3: The callback or handler pattern
	Slide 27: The interface
	Slide 28: Example: Expected Behavior
	Slide 29: The Client
	Slide 30: The Server
	Slide 31: Pattern #4: The Typed-Emitter Pattern
	Slide 32: Emitters use a server/client model
	Slide 33: Typed Emitters use types to specify messages that servers and clients can exchange
	Slide 34: Emitters typically provide many methods
	Slide 35: This pattern can be used across multiple machines using websockets.
	Slide 36: Creating a Server 
	Slide 37: Finishing the server
	Slide 38: Building a client
	Slide 39: The client handlers
	Slide 40: Choreographies and Projections
	Slide 41: Review: Learning Goals for this Lesson


