
CS 4530: Fundamentals of Software Engineering

Module 5: Interaction-Level Design Patterns

Adeel Bhutta, Joydeep Mitra, and Mitch Wand

Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

• By the end of this lesson, you should be able to
• Explain how patterns capture common solutions and

tradeoffs for recurring problems.

• Explain and give an example of each of the following:
• The Demand-Pull pattern

• The Data-Push (aka Listener or Observer) pattern

• The Callback or Handler pattern

• The Typed-Emitter pattern

2

What is a Pattern?

• A Pattern is a summary of a standard solution (or
solutions) to a specific class of problems.

• A pattern should contain
• A statement of the problem being solved
• A solution of the problem
• Alternative solutions
• A discussion of tradeoffs among the solutions.

• For maximum usefulness, a pattern should have a
name.
• So you can say “here I’m using pattern P” and people

will know what you had in mind.

3

Patterns help communicate intent

• If your code uses a well-known pattern, then the
reader has a head start in understanding your code.

4

Patterns are intended to be flexible

• We will not engage in discussion about whether a
particular piece of code is or is not a “correct”
instance of a particular pattern.

5

This week we will talk about the interaction
scale

6

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Example: Interface for a simple clock

7

src/pullingClock/IPullingClock.ts

export default interface IPullingClock {

 /** sets the time to 0 */
 reset():void

 /** increments the time */
 tick():void

 /** getter that returns the current time */
 get time():number

}

Tests for the clock and the client describe
their desired behavior

8

import { SimpleClock, ClockClient } from "./simpleClock"

test("test of SimpleClock", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(clock1.time).toBe(2)
 clock1.reset()
 expect(clock1.time).toBe(0)
})

src/pullingClock/simpleClockUsingPull.test.ts

test("test of ClockClient", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 const client1 = new ClockClient(clock1)
 expect(clock1.time).toBe(0)
 expect(client1.clientTime()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(client1.clientTime()).toBe(2)
})

simpleClockUsingPull.ts

9

import IClock from "./IPullingClock";

export class SimpleClock implements IClock {
 private _time = 0
 public reset() : void {this._time = 0}
 public tick() : void { this._time++ }
 public get time(): number { return this._time }
}

export class ClockClient {
 constructor (private theclock:IClock) {}
 clientTime(): number {return this.theclock.time}
}

src/pullingClock/simpleClockUsingPull.ts

SimpleClock is the Producer

ClockClient is the Consumer

We call this the "demand-pull" pattern

• because the when the client needs some data, it
pulls the data it needs from the server.

• Alternative names: you could call these the
consumer and the producer.

10

But there's a potential problem here.

• What if the clock ticks once per second, but there
are dozens of clients, each asking for the time every
10 msec?

• Our clock might be overwhelmed!

• Can we do better for the situation where the clock
updates rarely, but the clients need the values
often?

11

The 'data-push' pattern

• We'd like to arrange it so that the server pushes the
data to the consumer only when it changes

• To accomplish that, the consumer needs to
advertise an 'update' method that the producer can
call.

12

This is called the Listener or Observer
Pattern

• Also called "publish-subscribe pattern"

• The object being observed (the “subject”) keeps a
list of the objects who need to be notified when
something changes.
• subject = producer = publisher

• When a new object (i.e., the “consumer”) wants to
be notified when the subject changes, it registers
with ("subscribes to") the
subject/producer/publisher
• observer = consumer = subscriber = listener

13

Interface for a clock using the Push pattern

14

export interface IPushingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .notify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another consumer and initializes it with the current time */
 addListener(listener:IPushingClockClient):number
}

src/pushingClock/pushingClock.interface.ts

Interface for a clock listener

15

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void
}

src/pushingClock/pushingClock.interface.ts

Tests

16

test("single observer", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

 test("Multiple Observers", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 const observer2
 = new PushingClockClient(clock1)
 const observer3
 = new PushingClockClient(clock1)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 expect(observer2.time).toBe(2)
 expect(observer3.time).toBe(2)
 })

src/pushingClock/pushingClock.test.ts

A PushingClock class

17

export default class PushingClock implements IPushingClock {
 private _time = 0
 reset() : void { this._time = 0; this.notifyAll() }
 tick() : void { this._time++; this.notifyAll() }

 private _observers: IPushingClockClient[] = []

 public addListener(obs:IPushingClockClient): number {
 this._observers.push(obs);
 return this._time
 }

 private notifyAll() : void {
 this._observers.forEach(obs => obs.notify(this._time))
 }
 }

src/pushingClock/pushingClock.ts

A Client

18

export class PushingClockClient implements IPushingClockClient {

 private _time:number
 constructor (theclock:IPushingClock) {
 this._time = theclock.addListener(this)
 }

 notify (t:number) : void {this._time = t}

 get time () : number {return this._time}
}

src/pushingClock/pushingClockClients.ts

The observer can do whatever it likes with
the notification

19

export class DifferentClockClient implements IPushingClockClient {

 /** TWICE the current time, as reported by the clock */
 private _twiceTime:number
 constructor (theclock:IPushingClock) {
 this._twiceTime = theclock.addListener(this) * 2
 }

 /** list of all the notifications received */
 public readonly notifications : number[] = [] // just for fun

 notify(t: number) : void {
 this._twiceTime = t * 2
 this.notifications.push(t)
 }

 get time() : number { return (this._twiceTime / 2) }
}

src/pushingClock/pushingClockClients.ts

Better test this, too

20

test("test of DifferentClockClient", () => {
 const clock1 = new PushingClock()
 const observer1 = new DifferentClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 expect(observer1.time).toBe(1)
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

src/pushingClock/pushingClock.test.ts

Tests for .notifications method

21

test("DifferentClockClient accumulates the times correctly", ()
=> {
 const clock1 = new PushingClock()
 clock1.tick()
 const differentClient = new DifferentClockClient(clock1)
 expect(differentClient.time).toBe(1)
 expect(differentClient.notifications).toEqual([])
 clock1.tick()
 clock1.tick()
 clock1.tick()
 expect(differentClient.time).toBe(4)
 expect(differentClient.notifications).toEqual([2, 3, 4])
 })

src/pushingClock/pushingClock.test.ts
There are more tests in here;
you should look at them.

Push or Pull?

22

data changes faster

more data requests

data changes faster;
prefer to only pull
when needed

data changes
slowly;
prefer to push
on change

Maybe the server doesn't want to give the
client access to all of its methods

25

export class DifferentClockClient implements IPushingClockClient {

 /** TWICE the current time, as reported by the clock */
 private twiceTime:number

 constructor (theclock:IPushingClock) {
 this.twiceTime = theclock.addListener(this) * 2
 }

 /** list of all the notifications received */
 public readonly notifications : number[] = [] // just for fun

 notify(t: number) : void {
 this.notifications.push(t)
 this.twiceTime = t * 2 }

 time : number { return (this.twiceTime / 2) }
}

src/pushingClock/pushingClockClients.ts

DANGER!!

Pattern #3: The callback or handler pattern

• Maybe the server doesn't want to give the client
access to all of the server's methods.

• the server constructs the client and gives it a
function to call instead.

• Typically, this will be a function inside the server

• We call this function the callback or handler for the
client's action.

• This pattern is used all the time in REACT.

26

The interface

27

export interface ICallBackServer {

 // returns a new client that satisfies the ICallBackClient interface
 newClient(clientName: string): ICallBackClient;

 // returns the log of all messages received
 log(): string[];

}

export interface ICallBackClient {
 // sends the clients name to the server,
 sendName: () => void
 // asks the server for list of all messages received
 // from all clients.
 getLog: () => string[];

}

src/callBacksFunctional/callBacks.interface.ts

Example: Expected Behavior

28

 it('works', () => {

 const server = new Server()
 const client1 = server.newClient("A")
 const client2 = server.newClient("B")

 client1.sendPush()
 expect(client1.getLog()).toEqual(["A"])
 client2.sendPush()
 expect(client1.getLog()).toEqual(["A", "B"])
 expect(client2.getLog()).toEqual(["A", "B"])
 // now client1 pushes again
 client1.sendPush()
 // now the clients can see all the pushes
 expect(client1.getLog()).toEqual(["A", "B", "A"])
 expect(client2.getLog()).toEqual(["A", "B", "A"])

 })

src/callBacksFunctional/callBacks.test.ts

The Client

29

export default class Client implements ICallBackClient {

 // the server creates the client with two callbacks
 // the callbacks are kept as private members
 private _sendNameCallback: () => void
 private _getLogCallback: () => string[]

 constructor(
 sendNameCallback: () => void,
 logCallback: () => string[],
 // install the callbacks
) { this._sendNameCallback = sendNameCallback;
 this._getLogCallback = logCallback;
 }

 // the public methods just call the callbacks
 public sendName() { this._sendNameCallback(); }
 public getLog(): string[] { return this._getLogCallback(); }

}

callBacksFunctional/callBackExample.ts

The Server

30

export default class Server implements ICallBackServer {

 public newClient(clientName: string): ICallBackClient {
 return new Client(this.sendNameHandler(clientName), this.logHandler)
 }

 // the log of all messages received
 private _log: string[] = []
 public log(): string[] { return this._log }
 private logHandler = (): string[] => { return this._log }

 // we'd like to write
 private BogusSendNameHandler(clientName: string): () => void {
 return () => { this._log.push(clientName) }
 }

 // but this doesn't work because 'this' is not bound correctly
 // when the callback is called. So we use a lambda instead:

 private sendNameHandler = (clientName: string) => () => { this._log.push(clientName) }

 // this works because lambdas bind 'this' lexically, so 'this'
 // is always the server object.

}

callBacksFunctional/callBackServer.ts

Pattern #4: The Typed-Emitter Pattern

• What if the data source wants to notify its listeners
with several different kinds of messages?

• Maybe with different data payloads?

• And what if we want to take advantage of type-
checking?

31

Emitters use a server/client model

• Client can send a
message to its
server

• Server can send a
message to an
individual client

• …or to some or all
its clients

32

Server

Client Client Client

Typed Emitters use types to specify messages
that servers and clients can exchange

33

// a simple ping-pong protocol for testing WebSocket connections.

// server starts with (ping 0)
// client replies to server 'ping n' with 'pong n' (n <= 5)
// server replies to client 'pong n' with 'ping n+1'

export interface ServerToClientEvents {
 'ping': (count:number) => void;
}

export interface ClientToServerEvents {
 'pong': (clientName: string, count:number) => void;
 'goodbye': (clientName: string) => void;
}

Note: this is the
interface for the socket-
io implementation of
emitters. Other
implementations use
somewhat different
interfaces.

src/webSocketsSimple/shared.ts

Emitters typically provide many methods

34

export interface EventEmitter {

 /** The event callbacks are called with the passed arguments */
 emit(type, ... args);
 /** Run callback every time event is emitted */
 on(event, callback);
 /** Run callback when event is emitted just for the first time */
 once(event, callback);
 /** Removes the callback for event */
 off(event, callback);
 /** Removes all callbacks for event */
 off(event);
 /** Removes all callbacks for all events */
 off();

}

This pattern can be used across multiple
machines using websockets.

• Websockets is a standard, but low-level protocol for
sending messages between machines.

• Socket.io provides a typed-emitter-style
programming model for webSockets.

• It also provides automatic reconnection, broadcast
rooms, and other goodies

35

https://socket.io/docs/v4/tutorial/introduction
https://socket.io/docs/v4/tutorial/introduction

Creating a Server

36

import { createServer as createHttpServer } from "http";
import { Server, Socket } from "socket.io";
import { ClientToServerEvents, ServerToClientEvents } from './shared';

const corsParams = {
 origin: "http://localhost:8080", // Updated to match client port
 methods: ["GET", "POST"]
}

export default function createServer() {
 const httpServer = createHttpServer();
 const io = new Server<ClientToServerEvents, ServerToClientEvents>(httpServer, { cors: corsParams });
 io.on("connection", (socket) => {
 console.log('server reports new connection')
 startServerHandlers(socket)
 })
 console.log('server.ts: Listening on port 8080')
 httpServer.listen(8080);
}

function startServerHandlers(socket: Socket<ClientToServerEvents, ServerToClientEvents>){

 console.log('sending initial ping')
 socket.emit('ping', 0); // send initial ping

 socket.on('pong', (clientName: string, n: number) => {
 console.log(`server received pong from ${clientName} with count ${n}`);
 if (count < 5) {
 socket.emit('ping', n + 1); // reply with ping n+1
 } else {
 console.log(`server disconnecting ${clientName} after 5 pings`);
 socket.disconnect();
 }
 })

 socket.on('goodbye', (clientName: string) => {
 console.log(`server received goodbye from ${clientName}`);
 });;
}

Finishing the server

37

src/webSocketsSimple/server.ts

Here's where the
server implements
the protocol we
saw before

Building a client

38

import { io, Socket } from 'socket.io-client';
import { ClientToServerEvents, ServerToClientEvents } from './shared';

const clientURL = "http://localhost:8080"; // Ensure this matches the server URL

export default class Client {
 private socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(clientURL)
 private clientName: string;

 constructor(clientName: string) {
 this.clientName = clientName;
 console.log(clientName, `connecting to`, clientURL);
 startClientHandlers(this.socket, this.clientName);
 console.log(`${this.clientName} event handlers started`);
 }
}

src/webSocketsSimple/client.ts

The client handlers

39

function startClientHandlers(
 socket: Socket<ServerToClientEvents, ClientToServerEvents>,
 clientName: string
) {
 // system starts by sending 'connect'
 socket.on('connect', () => {
 console.log(`${clientName} connected to server on ${clientURL}`);
 });

 socket.on('ping', (n: number) => {
 console.log(`${clientName} received ping with count ${n}`);
 if (n <= 5) {
 socket.emit('pong', clientName, n); // reply with pong
 } else {
 console.log(`${clientName} received ping with count ${n} > 5, this shouldn't happen`);
 socket.disconnect(); // disconnect if count exceeds 5
 }
 });

}

Choreographies and Projections

40

Choreography

Projections

Review: Learning Goals for this Lesson

• You should now be able to:
• Explain how patterns capture common solutions and

tradeoffs for recurring problems.

• Explain and give an example of each of the following:
• The Demand-Pull pattern

• The Data-Push (aka Listener or Observer) pattern

• The Callback or Handler pattern

• The Typed-Emitter pattern

41

	The Interaction Scale
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 5: Interaction-Level Design Patterns
	Slide 2: Learning Goals for this Lesson
	Slide 3: What is a Pattern?
	Slide 4: Patterns help communicate intent
	Slide 5: Patterns are intended to be flexible
	Slide 6: This week we will talk about the interaction scale
	Slide 7: Example: Interface for a simple clock
	Slide 8: Tests for the clock and the client describe their desired behavior
	Slide 9: simpleClockUsingPull.ts
	Slide 10: We call this the "demand-pull" pattern
	Slide 11: But there's a potential problem here.
	Slide 12: The 'data-push' pattern
	Slide 13: This is called the Listener or Observer Pattern
	Slide 14: Interface for a clock using the Push pattern
	Slide 15: Interface for a clock listener
	Slide 16: Tests
	Slide 17: A PushingClock class
	Slide 18: A Client
	Slide 19: The observer can do whatever it likes with the notification
	Slide 20: Better test this, too
	Slide 21: Tests for .notifications method
	Slide 22: Push or Pull?
	Slide 25: Maybe the server doesn't want to give the client access to all of its methods
	Slide 26: Pattern #3: The callback or handler pattern
	Slide 27: The interface
	Slide 28: Example: Expected Behavior
	Slide 29: The Client
	Slide 30: The Server
	Slide 31: Pattern #4: The Typed-Emitter Pattern
	Slide 32: Emitters use a server/client model
	Slide 33: Typed Emitters use types to specify messages that servers and clients can exchange
	Slide 34: Emitters typically provide many methods
	Slide 35: This pattern can be used across multiple machines using websockets.
	Slide 36: Creating a Server
	Slide 37: Finishing the server
	Slide 38: Building a client
	Slide 39: The client handlers
	Slide 40: Choreographies and Projections
	Slide 41: Review: Learning Goals for this Lesson

